A New Class of 2q-Point Nonstationary Subdivision Schemes and Their Applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary and Three-point Univariate Subdivision Schemes

The generating function formalism is used to analyze the continuity properties of univariate ternary subdivision schemes. These are compared with their binary counterparts.

متن کامل

The m-Point Quaternary Approximating Subdivision Schemes

In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer ) approximating subdivision schemes, which have smaller support and higher smoothness, comparing to binary and ternary schemes. The proposed algorithm has been derived from uniform B-spline basis function using the Cox-de Boor recursion formula. In order to determine the convergence an...

متن کامل

Four-Point n-Ary Interpolating Subdivision Schemes

andApplied Analysis Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013 ISRNAppliedMathematics Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013International Journal ofCombinatorics Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2013Jou...

متن کامل

Analysis of Univariate Nonstationary Subdivision Schemes with Application to Gaussian-Based Interpolatory Schemes

This paper is concerned with non-stationary subdivision schemes. First, we derive new sufficient conditions for Cν smoothness of such schemes. Next, a new class of interpolatory 2m-point non-stationary subdivision schemes based on Gaussian interpolation is presented. These schemes are shown to be CL+μ with L ∈ Z+ and μ ∈ (0, 1), where L is the integer smoothness order of the known 2m-point Desl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7070639